Zu-Geng's axiom vs Cavalieri's theory
نویسنده
چکیده
When Cavalieri found his theory in 1635, Chinese mathematicians had used the theory for more than one millennium. 2003 Elsevier Inc. All rights reserved.
منابع مشابه
An Historical Account of Set-theoretic Antinomies Caused by the Axiom of Abstraction
The beginnings of set theory date back to the late nineteenth century, to the work of Cantor on aggregates and trigonometric series, which culminated into his seminal work Contributions to the Founding of the Theory of Transfinite Numbers [2]. Although this work was published in 1895 and 1897, in two parts, the theory of sets had been established as an independent branch of mathematics as early...
متن کاملWie findet man die verantwortlichen Axiome? Axiom-Pinpointing in Beschreibungslogiken
Axiom-Pinpointing bestimmt die für eine Konsequenz verantwortlichen Axiome einer Ontologie und unterstützt dadurch die Suche und Behebung von Fehlern. In der Arbeit [Peñ09b], deren Resultate hier zusammengefasst werden, wurde untersucht, unter welchen Bedingungen sich tableau-artige und auf automaten-basierte Schlußfolgerungsverfahren für Beschreibungslogiken stets zu Pinpointing-Verfahren erwe...
متن کاملOn characterizations of the fully rational fuzzy choice functions
In the present paper, we introduce the fuzzy Nehring axiom, fuzzy Sen axiom and weaker form of the weak fuzzycongruence axiom. We establish interrelations between these axioms and their relation with fuzzy Chernoff axiom. Weexpress full rationality of a fuzzy choice function using these axioms along with the fuzzy Chernoff axiom.
متن کاملGravitational Descendants and the Moduli Space of Higher Spin Curves
The purpose of this note is introduce a new axiom (called the Descent Axiom) in the theory of r-spin cohomological field theories. This axiom explains the origin of gravitational descendants in this theory. Furthermore, the Descent Axiom immediately implies the Vanishing Axiom, explicating the latter (which has no a priori analog in the theory of Gromov-Witten invariants), in terms of the multi...
متن کاملA minimal axiom group for rough set based on quasi-ordering.
Rough set axiomatization is one aspect of rough set study to characterize rough set theory using dependable and minimal axiom groups. Thus, rough set theory can be studied by logic and axiom system methods. The classic rough set theory is based on equivalent relation, but rough set theory based on reflexive and transitive relation (called quasi-ordering) has wide applications in the real world....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 152 شماره
صفحات -
تاریخ انتشار 2004